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Abstract

There are many numerical methods for solving partial different equations (PDEs) on manifolds
such as classical implicit, finite difference, finite element, and isogeometric analysis methods
which aim at improving the interoperability between finite element method and computer aided
design (CAD) software. However, these approaches have difficulty when the domain has singu-
larities since the solution at the singularity may be multivalued. This paper develops a novel
numerical approach to solve elliptic PDEs on real, closed, connected, orientable, and almost
smooth algebraic curves and surfaces. Our method integrates numerical algebraic geometry,
differential geometry, and a finite difference scheme which is demonstrated on several examples.
Keywords. Partial differential equations, elliptic equations, numerical algebraic geometry, real
algebraic geometry
AMS Subject Classification. 65N06, 65H14, 68W30

1 Introduction

Advances in fluid dynamics, biology, material science, and other disciplines have promoted the
study of partial differential equations (PDEs) defined on various manifolds. Numerous numeri-
cal methods have been developed to solve these PDEs, such as classical implicit [5, 6, 21], finite
difference [20,25,27], finite element [13, 16, 22], and parameterization methods [24, 26]. In this pa-
per, we specifically consider linear elliptic PDEs defined on closed algebraic curves and surfaces,
which are described implicitly as the solution to a system of polynomial equations. We consider
the well-posedness of the problem when the domain has singularities corresponding to problems in
which variational methods can not be applied. In particular, when the domain is a real closed alge-
braic curve, we can always reduce the problem to solving an ordinary differential equation (ODE)
described in terms of the arc length. Numerically, we can construct a meshing of the curve which
is uniform in arc length via numerical algebraic geometry [2, 8]. Such an approach is not limited
to smooth curves nor when an a priori global parameterization of the curve is known. From the
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meshing, we introduce a local tangential parameterization and embed it in a finite difference scheme
to numerically solve the problem. A similar approach is extended to real closed algebraic surfaces
which are almost smooth, i.e., have at most finitely many singularities.

The linear elliptic PDEs under consideration have the form

�∆u� c � u � f on Ω (1)

where Ω is a closed, connected, and orientable d-dimensional algebraic set in Rn where 0   d   n.
Thus, Ω is described by the solution set of a system of polynomial equations F � 0 on Rn. Curves
have d � 1 while surfaces have d � 2. For example, the unit circle in R2 as shown in Fig. 1(a) is a
curve defined by the solution set of the polynomial equation x2 � y2 � 1 � 0 while the unit sphere
in R3 is a surface defined by the solution set of the polynomial equation x2 � y2 � z2 � 1 � 0. The
operator ∆ is the Laplace-Beltrami operator on Ω while c and f are functions independent of u.
With this setup, the dimension of the tangent space at each point in Ω is at least d. The smooth
points of Ω are the points where the dimension of the tangent space is equal to d while the singular
points are those where the dimension of the tangent space is larger than d. For curves (d � 1), the
number of singular points is always finite, e.g., the lemniscate of Gerono showed in Fig. 1(b) has
one singular point. We only consider surfaces (d � 2) where the number of singular points is finite,
called almost smooth surfaces. The horn torus shown in Fig. 1(c) is an almost smooth surface with
one singular point while the Whitney umbrella shown in Fig. 1(d) is not an almost smooth surface
since it has a line of singularities.

For any d, if there are no singular points, then Ω is said to be smooth, i.e., a manifold, and
there are many existing numerical methods, e.g., [4–6, 10, 13, 16, 20–22, 24–27], for solving (1). For
example, [13] considered finite element methods for solving on triangulated surfaces and implicit
surface methods using a level set description of the surface. Variational techniques for solving
on smooth surfaces based on splines and non-uniform B-splines (NURBS) are reviewed in [4].
Recently, [10] established the theoretical framework to analyze cut finite element methods for the
Laplace-Beltrami operator defined on a manifold. These methods focus on smooth surfaces which
either can be parameterized or implicitly represented by level sets. In the case of the implicit
surface methods, a discretization of the space where the manifold is embedded in is required, which
can be inefficient when the codimension, i.e., n� d, is high.

To the best of our knowledge, little to no studies have been done to investigate the existence
of a theoretical or numerical solution on curves with singularities. One possible reason for this is
that the solution u to (1) need not take a single value at a singularity of Ω due to the presence
of multiple local irreducible components at a singularity, e.g., the lemniscate of Gerono shown in
Fig. 1(b) has two local irreducible components at the singular point. As an illustration, Figure 2
shows the solutions to the following two problems

paq �∆u�
�

� �
4x2

1�4x2
2�3

8x2
1x

2
2�16x4

2�3x2
1�17x2

2�4

	

� u � � � x1 on Ω pbq �∆u� u � x2
1 � x1x2 � 1 on Ω

(2)

(a) (b) (c) (d)

Figure 1: (a) circle, (b) lemniscate of Gerono, (c) horn torus, and (d) Whitney umbrella
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(a) (b)

Figure 2: Solutions corresponding to (2) on the lemniscate of Gerono where the dashed line corre-
sponds with px1; x2q � p0; 0q showing the first is univalued while the second is multivalued.

where the domain is the lemniscate of Gerono shown in Fig. 1(b) and defined by

Ω � tpx1; x2q P R2 | x4
1 � x

2
1 � x

2
2 � 0u:

The solution of the former is u � x1 which is univalued at the singularity p0; 0q while the solution of
the latter takes two different values at p0; 0q, one along each of the two local irreducible components
at p0; 0q. These problems will be further considered in Exs. 2.7 and 3.9, respectively. Numerical
algebraic geometry will also be used to compute the local irreducible components [9] to ensure the
proper structure of the solution u at the singularities.

The structure of the rest of the paper is as follows. Section 2 shows the existence and uniqueness
of the solution to the elliptic problem (1) under certain conditions along with analysis when a global
parameterization is known. Sections 3 and 4 describe a local tangential parameterization at smooth
points along with considering local irreducible components at singularities.

2 Global parameterization

2.1 Formulation

For k P N Y t8u and a connected set D � R, let CkpD;Rnq consist of the functions � : D Ñ Rn

which are k-times continuously differentiable on D. For 0 ⁄ r ⁄ k, let �prqptq denote the rth

derivative of � at t. A real algebraic curve Ω � Rn is called a closed parametric Ck curve if there
exists a closed interval ra; bs P R and a surjective map X : ra; bs Ñ Ω such that X P Ckpra; bs;Rnq

with Xprqpaq � Xprqpbq for all 0 ⁄ r ⁄ k. If X is also a bijection between ra; bq and Ω, then Ω is
simple. A function h : Ω Ñ R is k-times continuously differentiable on Ω if h �X P Ckpra; bs;Rq.

Example 2.1 The unit circle Ω � tx2
1 � x2

2 � 1u � R2 shown in Fig. 1(a) is a simple closed
parametric C8 curve. The surjective function X : r0; 2�s ÞÑ Ω defined by Xp�q � pcosp�q; sinp�qq
is infinitely differentiable and bijects r0; 2�q onto Ω.

The lemniscate of Gerono Λ � tx4
1 � x2

1 � x2
2 � 0u � R2 shown in Fig. 1(b) is a closed

parametric C8 curve since the surjection Y : r0; 2�s ÞÑ Λ defined by Y p�q � pcosp�q; sinp2�q{2q is
infinitely differentiable. The map Y is not a bijection since Y p�{2q � Y p3�{2q � p0; 0q which is the
self-intersection point. Hence, Λ is not a simple curve.

A real algebraic surface Ω � Rn is called a closed parametric Ck surface if, for every x� P Ω,
there exists a nonempty open connected set V � R2, an open set U � Rn containing x�, and a
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XÝÑ
V x� PU X 


Figure 3: Illustrating a closed parametric map at x � � p 0; 0; � 1q on the sphere from Ex. 2.2

bijective map X : V Ñ U X 
 such that X PCkpV;Rnq and the rank of the Jacobian matrix of X ,
denoted JX , at every point in V is 2. A function h : 
 Ñ R is k-times continuously di�erentiable
on 
 if h � X PCkpV;Rq.

Example 2.2 The unit sphere 
 � t x2
1 � x2

2 � x2
3 � 1u € R3 is a closed parametericC8 surface.

Due to rotational symmetry of the sphere, we only need to consider one point, sayx � � p 0; 0; � 1q.
As shown in Fig. 3, one can takeV � t a2

1 � a2
2   1{4u € R2, U � t x2

1 � x2
2   1{4u € R3 which

clearly contains x � , and bijective mapX : V Ñ U X 
 de�ned by

X pa1; a2q �
�

a1; a2; �
b

1 � a2
1 � a2
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which is in�nitely di�erentiable with full rank Jacobian matrix on V .
The Whitney umbrella � � t x2

1 � x2
2x3u € R3 shown in Fig. 1(c) is not a closed parametricCk

surface for any k P N Y t8u since, for example, the surface� near the point p0; 0; � 1q is one-
dimensional (called the \handle" of the Whitney umbrella).

We now turn to consider (1) on 
 € Rn . Suppose that G is a given metric tensor de�ned on
the smooth points of 
 with inverse G� 1. Then, in local coordinatespt1; : : : ; tdq where d � dim 
,

� u �
1

a
|g|

d¸

i � 1

B
Bt i

�
a

|g| �
d¸

j � 1

gij Bu
Bt j

�

(3)

where g � det G and gij is the pi; j q entry of G� 1.

Example 2.3 For 
 � Rn with the standard metric tensor G � I n , the n � n identity matrix,
the local coordinates are simply the standard coordinatespx1; : : : ; xnq, g � det G � 1, and gij � � ij

(Kronecker delta). Hence,

� u �
n¸

i � 1

B2u
Bx2

i

which is simply the Laplacian ofu on Rn .

Example 2.4 Reconsider the unit circle 
 � t x2
1 � x2

2 � 1u € R2 with parameterization

X p� q � p x1p� q; x2p� qq � pcosp� q; sinp� qq for � P r0; 2� s
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from Ex. 2.1. Since
g � } X 1p� qq}2 � sin2p� q � cos2p� q � 1;

we know thatG � G� 1 � r 1s. Hence,

� u �
d2u
d� 2 :

For example, if upxq � x1 � x2, then up� q � cosp� q � sinp� q with

� u �
d2

d� 2 pcosp� q � sinp� qq � �p cosp� q � sinp� qq � � u:

If, instead, we utilize the rational parameterization

X ptq � p x1ptq; x2ptqq �
�

1 � t2

1 � t2 ;
2t

1 � t2



for t PR;

then

g � } X 1ptq}2 �
�

� 4t
p1 � t2q2


 2

�
�

2p1 � t2q
p1 � t2q2


 2

�
4

p1 � t2q2

with G � r gs and G� 1 � r g� 1s. Hence,

� u �
1 � t2

2
d
dt

�
1 � t2

2
du
dt



�

1 � t2

4

�
p1 � t2q

d2u
dt2 � 2t

du
dt



�

p1 � t2q2

4
d2u
dt2 �

tp1 � t2q
2

du
dt

:

Similar as above, if upxq � x1 � x2, then uptq � p 1 � 2t � t2q{p1 � t2q and one can verify that

� u � �
1 � 2t � t2

1 � t2 � � u:

Example 2.5 For the unit sphere 
 � t x2
1 � x2

2 � x2
3 � 1u € R3, consider the parameterization

X p� 1; � 2q � p sinp� 1qcosp� 2q; sinp� 1qsinp� 2q; cosp� 1qq for � 1 P r0; � s and � 2 P r0; 2� s:

The metric tensor is

G �
�

Bx
B� i

�
Bx
B� j

�

i;j
�

�
1 0
0 sin2p� 1q

�
with G� 1 �

�
1 0
0 csc2p� 1q

�

yielding g � det G � sin2p� 1q. Note that since � 1 P r0; � s,
a

|g| � sinp� 1q ¥ 0. Therefore,

� u �
1

sinp� 1q

�
B

B� 1

�
sinp� 1q

Bu
B� 1



�

B
B� 2

�
sinp� 1qcsc2p� 1q

Bu
B� 2





�
B2u
B� 2

1
� csc2p� 1q

B2u
B� 2

2
� cotp� 1q

Bu
B� 1

:

For example, if upxq � x1 � x2 � x3, then up� q � sinp� 1qpsinp� 2q � cosp� 2qq � cosp� 1q with

� u � � u �
sinp� 2q � cosp� 2q

sinp� 1q
�

�
cos2p� 1q

sinp� 2q � cosp� 2q
sin � 1

� cosp� 1q



� � 2u:
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2.2 Well-posedness for curves

Let H 1p
 q denote the Sobolev space withk � p � 1 and vanishing boundary set 
, and H � 1p
 q
denote the dual space toH 1p
 q. When 
 is understood, we simply write H 1 and H � 1, respectively.

The following provides our main theoretical result about well-posedness of (1) for curves.

Theorem 2.6 If 
 is a closed parametricC1 curve and f; c P H � 1 with c ¥ 0 and
³

 c ¡ 0, then

there exists a unique weak solutionu PH 1 to (1).

Proof. We �rst de�ne a weak solution to (1) by multiplying v P H 1 to both sides of (1) and
applying Green's �rst identity. Hence, for the standard inner product x�; �y, we have

»



p� � u � cuqvdx �

»



xr u; r vydx �

»



cuvdx �

»



fvdx: (4)

In particular, a function u P H 1 is called a weak solution to (1) if (4) is satis�ed for all v P H 1.
Consider writing (4) in the following bilinear form:

apu; vq � lpvq (5)

where

apu; vq:�
»



xr u; r vydx �

»



cuvdx and lpvq:�

»



fvdx: (6)

Then, we can prove (1) has a unique weak solution inH 1 using Lax-Milgram Theorem.
De�ne

x�; � yL 2 :�
»



x�; � ydx and xu; vy
 :� x r u; r vyL 2 � x

?
c � u;

?
c � vyL 2 :

The assumptions onc imply that x�; �y
 is an inner product. In fact, when c � 1, x�; �y
 is the
default inner product on H 1. Let } � } 
 on H 1 be the norm induced by x�; �y
 . Next, we show the
coercivity of the bilinear function ap�; �q. To that end, for any v PH 1,

apv; vq � } r v}2
L 2 � }

?
cv}2

L 2 � } v}2

 :

Given u; v PH 1, we square both sides of (6) and apply the Cauchy-Schwarz inequality to obtain

apu; vq2 � x r u; r vy2
L 2 �

� »



cuvdx


 2

� 2xr u; r vyL 2

»



cuvdx

¤ } r u}2
L 2 }r v}2

L 2 � }
?

c � u}2
L 2 }

?
c � v}2

L 2 � 2}r u}L 2 }r v}L 2 }
?

c � u}L 2 }
?

c � v}L 2

¤ p} r u}2
L 2 � }

?
c � u}2

L 2 qp}r v}2
L 2 � }

?
c � v}2

L 2 q

¤ } u}2

 }v}2




which shows the boundedness ofap�; �q. Sincef PH � 1, it follows immediately from the Lax-Milgram
Theorem that there exists a uniqueu PH 1 satisfying (5). l

Theorem 2.6 extends well-posedness of (1) to some curves which have singularities such as
the lemniscate of Gerono shown in Fig. 1(b) for appropriate choices off and c. In particular,
Theorem 2.6 assumes minimum regularity requirement onf and c. In the following examples in
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Sections 2.2 and 3,f and c have much nicer properties so that a classical solution exists, which must
be the unique solution by Theorem 2.6. By combining these properties together with Theorem 2.6
and applying the Solobev embedding theorem, the solutions to (1) satisfy more regularity conditions
leading to the results in Theorem 2.8 below.

Example 2.7 Let � be the lemniscate of Gerono as in Ex. 2.1. Consider the linear elliptic PDE

� � u � cpxq �u � � � x1 on � where cpxq � � �
4x2

1 � 4x2
2 � 3

8x2
1x2

2 � 16x4
2 � 3x2

1 � 17x2
2 � 4

: (7)

One can observe thatc ¥ 0 and
³
� c ¡ 0 by considering Fig. 4 which plotscpX p� qqfor � P r0; 2� s

whereX p� q � p cosp� q; sinp2� q{2q is the global parameterization of� as in Ex. 2.1. Hence, Thm. 2.6
shows that there exists a unique solution to(7). In fact, using (3), it is easy to verify that upxq � x1

solves(7). This problem will be reconsidered numerically in Ex. 3.9.

Figure 4: Plot of cpX p� qqwith respect to � P r0; 2� s from Ex. 2.7.

Building on the existence and uniqueness result provided by Theorem 2.6, the following develops
approaches for numerically computing the solution to (1) when a globabl parameterization is known.

2.3 Solving with a global parameterization

When the real algebraic curve 
 € Rn is a closed parametricC1 curve with a given parameterization
X : ra; bs ÞÑ
 such that X 1ptq � 0 for all t P ra; bs, solving (1) reduces to solving an ordindary
di�erential equation on ra; bswith periodic boundary as follows. By de�nition, gptq � } X 1ptq}2 ¡ 0,
Gptq � r gptqs, and G� 1ptq � r g� 1ptqsfor t P ra; bs. With (3), the linear elliptic PDE (1) simpli�es to

�
1
g

d2u
dt2 �

1
2g2

dg
dt

du
dt

� c � u � f on ra; bs (8)

with periodic boundary where, by abuse of notation, c and f are the corresponding restrictions.
Therefore, one can, for example, simply use a �nite di�erence approach with a three-point stencil
to discretize (8) as follows. GivenN , consider � t � p b� aq{N with t i � a � i � � t for i � 0; : : : ; N .
Sinceu is periodic on ra; bs with t0 � a and tN � b, we aim to computeui for i � 0; : : : ; N � 1 such
that ui � upt i q which amounts to computing UN � p u0; : : : ; uN � 1qT that solves the linear system

AN � UN � FN (9)
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where FN � p f pt0q; : : : ; f ptN � 1qqT and

AN �

�

�
�
�
�
�
�
�
�

C0 R0 0 � � � 0 L 0

L 1 C1 R1 0 � � � 0
0 L 2 C1 R2 � � � 0
...

. . . . . . . . .
...

0 � � � 0 L N � 2 CN � 2 RN � 2

RN � 1 0 � � � 0 L N � 1 CN � 1

�

�
�
�
�
�
�
�



(10)

such that

L i � �
1

gpt i q� t2

�
1 �

g1pt i q� t
4gpt i q



; Ci � cpt i q �

2
gpt i q� t2 ; and Ri � �

1
gpt i q� t2

�
1 �

g1pt i q� t
4gpt i q



:

By imposing a stronger condition on the regularity of the solution u to (1), namely u PC4p
 q € H 1,
we obtain the following.

Theorem 2.8 If u PC4p
 q and there exists� ¡ 0 such that c ¡ � , then the numerical scheme(9)
is convergent, stable, and has second order accuracy.

Proof. Using Taylor series expansion, we have

upxpt i � 1qq � upxpt i qq � � tu1pxpt i qq � � t2

2 u2pxpt i qq � � t3

3! u3 pxpt i qq � � t4

4! u4 pxp� i qq;
upxpt i � 1qq � upxpt i qq � � tu1pxpt i qq � � t2

2 u2pxpt i qq � � t3

3! u3 pxpt i qq � � t4

4! u4 pxp� i qq;
(11)

where � i P rt i ; t i � 1s and � i P rt i � 1; t i s. Therefore,

upxpt i � 1qq � 2upxpt i qq � upxpt i � 1qq
� t2 � u2pxpt i qq �

� t2

4!
pu4 pxp� i qq � u4 pxp� i qqq:

This expression combined with (9) yields

AN

�

�
�

upxpt0qq
...

upxptN � 1qq

�

�

 �

� t2

4!

�

�
�

u4 pxp� 0qq� u4 pxp� 0qq
...

u4 pxp� N � 1qq� u4 pxp� N � 1qq

�

�

 � FN : (12)

Denoting

uN �

�

�
�

upxpt0qq
...

upxptN � 1qq

�

�

 and u4

N �

�

�
�

u4 pxp� 0qq� u4 pxp� 0qq
...

u4 pxp� N � 1qq� u4 pxp� N � 1qq

�

�

 ;

subtracting (9) from (12) yields

AN puN � UN q � �
� t2

4!
u4

N :

Thus, the error satis�es

}uN � UN }8 �
� t2

4!
}A � 1

N u4
N }8 ¤

� t2

4!
}A � 1

N }8 }u4
N }8 : (13)
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For su�ciently small � t, one can assume thatCi ¡ � � 2
gpt i q� t2 ¡ 0 while both |L i | and |Ri | are

bounded above by, say,�4 � 1
gpt i q� t2 . Thus, we have

Ci � p| L i | � | Ri |q ¡
�
2

¡ 0:

Hence,AN is a strictly diagonally dominant matrix so that AN is invertible where the real parts
of the eigenvalues are positive so the stability of the scheme follows immediately. Moreover, the
Ahlberg-Nilson-Varah bound [17,18] yields}A � 1

N }8 ¤ 2
�   8 showing that

}uN � UN }8 ¤
2 � � t2

� � 4!
}u4

N }8 :

Since u P C4p
 q, the global error de�ned above for scheme (9) is bounded and converges to 0 as
the mesh size goes to zero. In particular, the scheme is convergent with second order accuracy.l

Of course, one can repeat this construction using a larger stencil and imposing a stronger
condition on the regularity of the solution to obtain higher order accuracy. The following illustrates
the convergence rate for the three-point stencil using a �ve-point stencil with many points to
estimate the error.

Example 2.9 Consider solving

� � u � u � x on x2 � 50y2 � 1: (14)

Using the global parameterization

X p� q �
�

sin �;
cos�
?

50



; � P r0; 2� s; (15)

one aims to solve

�
50

50� 49 sin2 �
u�� �

2450 sin� cos�
p50� 49 sin2 � q2

u� � u � sin � on r0; 2� s

such that u is periodic on r0; 2� s. Table 1 lists the error and convergence order which computa-
tionally veri�es second order convergence as expected by Thm. 2.8. Here, the error is computed by
comparing against the solution obtained using a �ve-point stencil withN � 20,480.

N L 8 Error Order

160 2.043�10� 4 |
320 5.099�10� 5 2.002
640 1.274�10� 5 2.000
1280 3.185�10� 6 2.000

Table 1: Comparison of error for solving (14) using the global parameterization (15).
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3 Local parameterization for curves

When there is no readily available global parameterization, one can solve (1) via a �nite di�erence
method based on local parameterization at each sample point. The following proceeds by �rst
considering a numerical cell decomposition using numerical algebraic geometry, then analyzing a
local tangential parameterization at smooth points, and �nally considering singular points.

3.1 Curve decomposition using numerical algebraic geometry

One approach for decomposing a curve is to utilize a numerical cellular decomposition [8,19] com-
puted using numerical algebraic geometry [3,23]. A cellular decomposition of a curve is a disjoint
union of �nitely many vertices V , which are simply points on the curve, and edgesE, which are
portions of the curve di�eomorphic to an interval in R. The endpoints of each edge are vertices.
In particular, V must contain the set of singular points of the curve.

Example 3.1 Reconsider the lemniscate of Gerono� € R2 de�ned in Ex. 2.1 and shown in
Fig. 2(b). Figure 5 illustrates a cellular decomposition of � consisting of 3 vertices and 4 edges.

Figure 5: Cellular decomposition for lemniscate of Gerono with verticesvi and edgesej

A numerical cellular decomposition simply represents each edge of a cellular decomposition by
an interior point along with a homotopy that permits the tracking along the edge starting from the
interior point. From this numerical representation, one can perform computations on each edge.
For example, one can sample points along each edge and construct a Chebyshev interpolant as
described in [1]. From the Chebyshev interpolant, one can easily approximate the arc length of
each edge and approximate mesh points in the desired structure, for example, uniform in arc length.

At each point on the curve, there is a local irreducible decomposition of the curve at the point
which can be computed using numerical algebraic geometry [9]. A curve is locally irreducible at
every smooth point on the curve and is locally di�eomorphic to the tangent line. This is utilized
next to construct a tangential parameterization at smooth points. The only points on a curve where
the curve could be locally reducible is at a singular point. Hence, at each singular point on the
curve, the approach in [9] uses the local monodromy group structure computed using a homotopy
to determine the locally irreducible components of the curve at a singular point. Moreover, each
locally irreducible component has a well-de�ned local degree [9]. If a component has local degree
equal to 1, then it is locally di�eomorphic to a tangent line.
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Example 3.2 Continuing from Ex. 3.1, all points are smooth points of � except v2 � p 0; 0q.
At v2, � decomposes into two locally irreducible components each of local degree1 corresponding to
each of the two local tangent directions atv2.

Local irreducible decomposition is important for solving (1) since Theorem 2.6 enforces that
the solution is continuous along each locally irreducible component. Hence, a numerical solving
scheme needs to allow for a singular point to take a di�erent value along each locally irreducible
component passing through the singular point as illustrated in Figure 2(b).

3.2 Tangential parameterization at smooth points

The following uses an approach based on a local tangential parameterization for a smooth curve to
compute x1psqand obtain g which greatly simpli�es the calculation of coe�cients for the numerical
scheme. Let� N � t p0; p1; : : : ; pN � 1u consist of N mesh points uniformly distributed in arc length
using a cyclic ordering with pi � pN � i as needed. De�nerpi � 1; pi � 1s to be the segment of the curve
passing through points pi � 1, pi , and pi � 1. Let vi be a unit tangent vector to the curve at pi and
consider` i ptq � pi � tv i which parameterizes the tangent line to the curve atpi . Consider the map
� i : rpi � 1; pi � 1s Ñ R de�ned by � i ppq � p p� pi q �vi . By replacing vi by � vi as needed and takingN
large enough,� i is a di�eomorphism from rpi � 1; pi � 1s to r� i ppi � 1q; � i ppi � 1qswhere

� i ppi � 1q   0 � � i ppi q   � i ppi � 1q:

See Fig. 6 for an illustration of this tangential parameterization construction.

Figure 6: Illustration of tangential parameterization.

Let X i : r� i ppi � 1q; � i ppi � 1qs Ñ rpi � 1; pi � 1s be the inverse of � i . Locally, (8) using X i ptq is
simpli�ed at t � 0 based on the following.

Theorem 3.3 With the setup described above,X 1
i p0q � vi . Moreover, for corresponding metric

tensor Gptq, (3) becomes� up0q � B2up0q
Bt2 .

Proof. For t P r� i ppi � 1q; � i ppi � 1qs, one knows that X i ptq satis�es
�

pX i ptq � pi q �vi � t
F pX i ptqq

�
� 0:
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