A numerical method for solving elliptic equations
on real closed algebraic curves and surfaces

Wenrui Hao*  Jonathan D. Hauenstein ~ Margaret H. Regan*  Tingting Tang®

September 21, 2023

Abstract

There are many numerical methods for solving partial different equations (PDEs) on manifolds
such as classical implicit, finite difference, finite element, and isogeometric analysis methods
which aim at improving the interoperability between finite element method and computer aided
design (CAD) software. However, these approaches have difficulty when the domain has singu-
larities since the solution at the singularity may be multivalued. This paper develops a novel
numerical approach to solve elliptic PDEs on real, closed, connected, orientable, and almost
smooth algebraic curves and surfaces. Our method integrates numerical algebraic geometry,
differential geometry, and a finite difference scheme which is demonstrated on several examples.
Keywords. Partial differential equations, elliptic equations, numerical algebraic geometry, real
algebraic geometry
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1 Introduction

Advances in fluid dynamics, biology, material science, and other disciplines have promoted the
study of partial differential equations (PDEs) defined on various manifolds. Numerous numeri-
cal methods have been developed to solve these PDEs, such as classical implicit [5,6,21], finite
difference [20,25,27], finite element [13,[16,]22], and parameterization methods [24}26]. In this pa-
per, we specifically consider linear elliptic PDEs defined on closed algebraic curves and surfaces,
which are described implicitly as the solution to a system of polynomial equations. We consider
the well-posedness of the problem when the domain has singularities corresponding to problems in
which variational methods can not be applied. In particular, when the domain is a real closed alge-
braic curve, we can always reduce the problem to solving an ordinary differential equation (ODE)
described in terms of the arc length. Numerically, we can construct a meshing of the curve which
is uniform in arc length via numerical algebraic geometry [2,8]. Such an approach is not limited
to smooth curves nor when an a priori global parameterization of the curve is known. From the
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meshing, we introduce a local tangential parameterization and embed it in a finite difference scheme
to numerically solve the problem. A similar approach is extended to real closed algebraic surfaces
which are almost smooth, i.e., have at most finitely many singularities.

The linear elliptic PDEs under consideration have the form

Au cu f on (1)

where 2 is a closed, connected, and orientable d-dimensional algebraic set in R™ where 0 d n.
Thus, € is described by the solution set of a system of polynomial equations F 0 on R". Curves
have d 1 while surfaces have d 2. For example, the unit circle in R? as shown in Fig. (a) is a
curve defined by the solution set of the polynomial equation x> y2 1 0 while the unit sphere
in R® is a surface defined by the solution set of the polynomial equation x> y? z? 1 0. The
operator A is the Laplace-Beltrami operator on  while ¢ and T are functions independent of u.
With this setup, the dimension of the tangent space at each point in € is at least d. The smooth
points of  are the points where the dimension of the tangent space is equal to d while the singular
points are those where the dimension of the tangent space is larger than d. For curves (d 1), the
number of singular points is always finite, e.g., the lemniscate of Gerono showed in Fig. (b) has
one singular point. We only consider surfaces (d  2) where the number of singular points is finite,
called almost smooth surfaces. The horn torus shown in Fig. [Ifc) is an almost smooth surface with
one singular point while the Whitney umbrella shown in Fig. (d) is not an almost smooth surface
since it has a line of singularities.

For any d, if there are no singular points, then 2 is said to be smooth, i.e., a manifold, and
there are many existing numerical methods, e.g., [446,/10,[13}[16,[20-22,[24-27], for solving (). For
example, [13] considered finite element methods for solving on triangulated surfaces and implicit
surface methods using a level set description of the surface. Variational techniques for solving
on smooth surfaces based on splines and non-uniform B-splines (NURBS) are reviewed in [4].
Recently, |10] established the theoretical framework to analyze cut finite element methods for the
Laplace-Beltrami operator defined on a manifold. These methods focus on smooth surfaces which
either can be parameterized or implicitly represented by level sets. In the case of the implicit
surface methods, a discretization of the space where the manifold is embedded in is required, which
can be inefficient when the codimension, i.e., N d, is high.

To the best of our knowledge, little to no studies have been done to investigate the existence
of a theoretical or numerical solution on curves with singularities. One possible reason for this is
that the solution U to need not take a single value at a singularity of €2 due to the presence
of multiple local irreducible components at a singularity, e.g., the lemniscate of Gerono shown in
Fig. b) has two local irreducible components at the singular point. As an illustration, Figure
shows the solutions to the following two problems
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Figure 1: (a) circle, (b) lemniscate of Gerono, (c) horn torus, and (d) Whitney umbrella
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Figure 2: Solutions corresponding to on the lemniscate of Gerono where the dashed line corre-
sponds with pX1;X2q  p0; 0q showing the first is univalued while the second is multivalued.

where the domain is the lemniscate of Gerono shown in Fig. [I{b) and defined by
Q tpx;;xqPR? | x] xi x5 ou

The solution of the former is u X1 which is univalued at the singularity p0; 0q while the solution of
the latter takes two different values at p0; 0gq, one along each of the two local irreducible components
at p0; 0g. These problems will be further considered in Exs. and respectively. Numerical
algebraic geometry will also be used to compute the local irreducible components 9] to ensure the
proper structure of the solution u at the singularities.

The structure of the rest of the paper is as follows. Section [2]shows the existence and uniqueness
of the solution to the elliptic problem under certain conditions along with analysis when a global
parameterization is known. Sections[3|and [4] describe a local tangential parameterization at smooth
points along with considering local irreducible components at singularities.

2 Global parameterization

2.1 Formulation

For k P NY t8u and a connected set D R, let CXpD; R"q consist of the functions :D R
which are k-times continuously differentiable on D. For 0—"t—K, let P'%tq denote the rt"
derivative of at t. A real algebraic curve Q@  R" is called a closed parametric CX curve if there
exists a closed interval ra;bhs P R and a surjective map X : ra;bs € such that X P Ckpra; bs; R"q
with XP9pag  XPMphg for all 0—T—K. If X is also a bijection between ra;bgq and €2, then  is
simple. A function h: Q R is k-times continuously differentiable on © if h X P CKpra; bs; Rq.

Example 2.1 The unit circle Q@  tx3 x5 1u  R? shown in Fig. (a) is a simple closed
parametric C8 curve. The surjective function X : 10;2 s Q defined by Xp q  pcosp q;sinp qq
is infinitely differentiable and bijects r0;2 q onto §2.

The lemniscate of Gerono A txX§ x3 X3 Ou R2 shown in Fig. (b) s a closed
parametric C8 curve since the surjection Y :10;2 s A defined by Yp q  pcosp ¢;sinp2 ¢{2q is
infinitely differentiable. The map Y is not a bijection since Yp {29 Y p3 {29 p0;0q which is the
self-intersection point. Hence, A is not a simple curve.

A real algebraic surface @  R" is called a closed parametric CK surface if, for every x P Q,
there exists a nonempty open connected set V R2, an open set U R" containing X , and a
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Figure 3: lllustrating a closed parametric map atx p 0;0; 1qon the sphere from Ex.

bijective map X :V N U X suchthat X PCXpv;R"gand the rank of the Jacobian matrix of X ,
denoted JX , at every pointin V is 2. A function h: N R is k-times continuously di erentiable
on if h X PCKpv:Rq

Example 2.2 The unit sphere  t x2 x3 x% 1u€ R®is a closed parametericC® surface.
Due to rotational symmetry of the sphere, we only need to consider one point, say p 0;0; 1g
As shown in Fig.[3, one can takeV t a? a2 1{4u€ R%2 U t x? x3 1{4u € R® which
clearly contains x , and bijective mapX :V N UX de ned by
b
Xpg;aq — ajjay; 1 & aj

which is in nitely di erentiable with full rank Jacobian matrix on V.

The Whitney umbrella  t x3  x3xsu € R® shown in Fig.[(c) is not a closed parametricCk
surface for any k P N Y t8u since, for example, the surface near the point g0;0; 1qis one-
dimensional (called the \handle" of the Whitney umbrella).

We now turn to consider (I) on € R". Suppose thatG is a given metric tensor de ned on

the smooth points of with inverse G 1. Then, in local coordinatespty;:::;tqqwhered dim ,
d d
1 . B @& .. & Bu
u a— = o ¢z (3)
|g|i 1 ! i1 J
whereg detG and ¢! is the pi;j gentry of G 1.
Example 2.3 For R" with the standard metric tensorG I, the n  n identity matrix,
the local coordinates are simply the standard coordinategxs;:::;Xng g detG 1, and ¢" i
(Kronecker delta). Hence,
SBu
B2
i1 BXi

which is simply the Laplacian ofu on R".
Example 2.4 Reconsider the unit circle  t x3 x3 1u€ R? with parameterization

XpQq pxipgxzpqq pcopgsinpaq for P10;2 s
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from Ex. 2.1. Since
g } X'pagf sinpq cospq L
we know thatG G ! r 1s Hence,
d’u
d?2
For example, ifusxq x1 X2, thenup g cog g sinp qwith
d? _ :
u WDCOSDOI sSinpgqq p copq sSnpqq w

If, instead, we utilize the rational parameterization

1 t2 2t
Xptq pXiptgXzptqq W;W for tPR;

then )
4 % o2pl t2q 4

Pl 2P m 2@  pl (2

with G r gsand G ! r g s Hence,

g } X'pa¥

1 t?d 1 t?du 1 t? , d?u du pl  t’fd?u  tpl t?qdu
2 dt 2 da 4 T U Mg 4 d2 2 dt

Similar as above, ifupxq X1 Xp, thenupg p1l 2t t?g{dl t?gand one can verify that

1 2t t2
1 t2

Example 2.5 For the unit sphere  t x3 x3 x3 1u€ R3, consider the parameterization
Xp1; 29 psinp 1qcoP »G sinp 1gsinp 2 cop1qq for PO, sand ,PI0;2 s
The metric tensor is

1 0

. 1
with G 0 cs@p q

Bx Bx 1 0
G > =2
Bi Bj

” 0 sirPp 1q

a__
yieldingg detG sin?p 1 Note that since 1 P10; s [g| sinp 1q ¥ 0. Therefore,

u . ! B sinp 1qE B sinp 1gcsép 1qE
sinpiq B B1 B2 B2
B’u 2 B’u Bu

For example, ifupxq X1 X2 X3, thenup q sinp 1g@inp 2q COP 20g coP 1q with

u gy >MP2G €O 29 cop 1q3|np ZQ_ CoP 2q

sinp 19 sin 1

Cco9P 14 2u:



2.2 Well-posedness for curves

Let H'p gdenote the Sobolev space wittk p 1 and vanishing boundary set , and H p g
denote the dual space toH'p g When is understood, we simply write H*andH 1, respectively.
The following provides our main theoretical result about well-posedness of (1) for curves.

3
Theorem 2.6 If is a closed parametricC curve andf;c PH 1 with c¥ Oand cj O, then

there exists a unique weak solutiom PH? to (1).

Proof. ~We rst de ne a weak solution to (1) by multiplying v P H? to both sides of (1) and
applying Green's rst identity. Hence, for the standard inner product x; y, we have
» » » »

p u cugudx Xrou;r vydx cuvdx fvdx: 4)

In particular, a function u PH? is called a weak solution to (1) if (4) is satis ed for all v PH .
Consider writing (4) in the following bilinear form:

apu;vg  lpvg (5)

where » » »
apu; vq: Xr u;r vydx cuvdx and lpvQq: fvdx: (6)

Then, we can prove (1) has a unique weak solution irH ! using Lax-Milgram Theorem.

De ne

» - o

X; Yo X; ydx and Xu;vy X T ourwvy: X cCu c vy 2!

The assumptions onc imply that x; y is an inner product. In fact, whenc 1, x;y is the
default inner product on H1. Let} } on H? be the norm induced byx; y . Next, we show the
coercivity of the bilinear function ap; g To that end, for any v PH?1,

2

a;vg }rviZ }ooow? } v
Given u;v PH?, we square both sides of (6) and apply the Cauchy-Schwarz inequality to obtain
» 2 »

a|aJ;vq2 X T ur vy cuvdx 2 u;r vy 2 cuvdx
2 2

?_ ?_ ? ?

a}ru}zirviZ, ¢ udd} c viZ, o 23 ulpe}r viie} € ul2} € Ve
?_ ?_

apirulf, }ocoudeapy ViE. 3 € Vi{q

o} u}?v}?

which shows the boundedness @ip; g Sincef PH 1, it follows immediately from the Lax-Milgram
Theorem that there exists a uniqueu P H ! satisfying (5). I

Theorem 2.6 extends well-posedness of (1) to some curves which have singularities such as
the lemniscate of Gerono shown in Fig. 1(b) for appropriate choices of and c. In particular,
Theorem 2.6 assumes minimum regularity requirement orf and c. In the following examples in
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Sections 2.2 and 3f and c have much nicer properties so that a classical solution exists, which must
be the unique solution by Theorem 2.6. By combining these properties together with Theorem 2.6
and applying the Solobev embedding theorem, the solutions to (1) satisfy more regularity conditions
leading to the results in Theorem 2.8 below.

Example 2.7 Let be the lemniscate of Gerono as in Ex. 2.1. Consider the linear elliptic PDE

ax3  4x3 3

u c u X on where ¢ :
P ' P 8x3x3 16x3 3xF 173 4

(7)
3

One can observe that ¥ 0 and c¢j O by considering Fig. 4 which plotscpX p qgqfor P 10;2 s

whereX p q pco gsing2 g{2qis the global parameterization of as in Ex. 2.1. Hence, Thm. 2.6

shows that there exists a unique solution t¢7). In fact, using (3), it is easy to verify that upxq  x1

solves (7). This problem will be reconsidered numerically in Ex. 3.9.

Figure 4. Plot of cpX p ggwith respectto P 10;2 sfrom Ex. 2.7.

Building on the existence and uniqueness result provided by Theorem 2.6, the following develops
approaches for numerically computing the solution to (1) when a globabl parameterization is known.

2.3 Solving with a global parameterization

When the real algebraic curve € R" is a closed parametricC? curve with a given parameterization
X :ra;bs PN such that X'tg O for all t P ra; bs solving (1) reduces to solving an ordindary
di erential equation on ra; bswith periodic boundary as follows. By de nition, gptq } X tqf i O,
Gptq rgptgsand G pg r g pgsfort P ra;bs With (3), the linear elliptic PDE (1) simpli es to

1d?u 1 dgdu

—— = f ; 8

gdZ 2@2dtdt " on ra; s ®)
with periodic boundary where, by abuse of notation,c and f are the corresponding restrictions.
Therefore, one can, for example, simply use a nite di erence approach with a three-point stencil

to discretize (8) as follows. GivenN, consider t pb ag{N witht; a i tfori O0;:::;N.

Sinceu is periodic onra;bswith tg aandty b, we aim to computeu; fori  0;:::;N 1 such

that u;  uptjqwhich amounts to computing Uy p Ug;:::;un 10 that solves the linear system
Ay Uy Fn 9)



whereFy p fpog:::;fpn 19d and

Co Ro 0 0 LO
Li C Ry 0 0
0 L, C; ) 0
AN ) . ) ) . (10)
O O LN 2 CN 2 RN 2
Ry 1 O 0 Ln1 Cno1
such that
1 g'tiq t 2 1 g'mtig t
i 1 o Ci oo ———: and R, — 1
' gpig t2 4dgtiq A g ' ogpig t2 4grtiq

By imposing a stronger condition on the regularity of the solution u to (1), namely u PC*p q€ H1,
we obtain the following.

Theorem 2.8 If uPC* gand there exists j O such thatcj , then the numerical scheme(9)
is convergent, stable, and has second order accuracy.

Proof. Using Taylor series expansion, we have

UPKEL 109 upkptiqq tulxpiqq —uZpptioq

: g g utepiad g
Ut 109 UXpiggq  tuxpiog  —-u®mptiqg

t3
<IN
3 4
U piagqg —-u® xpiaq
where ; P itj;tj 1sand ; Prtj 1;tis Therefore,

u i 2u i u i t?
PP 199 p‘g'qq PR 199 2 gg St piga u* xpigaq

This expression combined with (9) yields

UpXpoqq 2 u* pxp 0qq u? Xp oaq
AN ar Fn: (12)
upxpn 109 up N 109 U* xp N 109
Denoting
upXptoqq ut pxp oqq u* pp oqq
un ; and ug :
upptn 199 uXp N 109 U* Xp N 109

subtracting (9) from (12) yields

Avpun  Ung  —-uy:

Thus, the error satis es
t2 14 t? 1 4
Jun  Unls  —tAnTUNs B AN TTs Punde (13)
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For su ciently small  t, one can assume thatC; j W i 0 while both |L;| and |R;j| are

bounded above by, say,; W. Thus, we have

Ci plLil | Rilgi 5 o:

Hence, Ay is a strictly diagonally dominant matrix so that Ay is invertible where the real parts
of the eigenvalues are positive so the stability of the scheme follows immediately. Moreover, the
Ahlberg-Nilson-Varah bound [17,18] yields}A'}s @ 2 8 showing that

2 t?
Jun  Unjs B ﬁ}uﬁ}&

Sinceu P C*p q the global error de ned above for scheme (9) is bounded and converges to 0 as
the mesh size goes to zero. In particular, the scheme is convergent with second order accuraty.

Of course, one can repeat this construction using a larger stencil and imposing a stronger
condition on the regularity of the solution to obtain higher order accuracy. The following illustrates
the convergence rate for the three-point stencil using a ve-point stencil with many points to
estimate the error.

Example 2.9 Consider solving
u u X on x? 50y 1 (14)

Using the global parameterization

Xpq sin: 22 . PI0;2 s (15)
50
one aims to solve
50 2450sin cos

sin onr0;2 s

50 49si? © B0 A49si? @

such that u is periodic on r0;2 s Table 1 lists the error and convergence order which computa-
tionally veri es second order convergence as expected by Thm. 2.8. Here, the error is computed by
comparing against the solution obtained using a ve-point stencil withN  20,480.

N | Lg Error |  Order
160 2.04310 4 |
320 5.09910 ° 2.002
640 1.27410 ° 2.000
1280 3.18510 © 2.000

Table 1: Comparison of error for solving (14) using the global parameterization (15).



3 Local parameterization for curves

When there is no readily available global parameterization, one can solve (1) via a nite di erence
method based on local parameterization at each sample point. The following proceeds by rst
considering a numerical cell decomposition using numerical algebraic geometry, then analyzing a
local tangential parameterization at smooth points, and nally considering singular points.

3.1 Curve decomposition using numerical algebraic geometry

One approach for decomposing a curve is to utilize a numerical cellular decomposition [8,19] com-
puted using numerical algebraic geometry [3,23]. A cellular decomposition of a curve is a disjoint
union of nitely many vertices V, which are simply points on the curve, and edge<€, which are
portions of the curve di eomorphic to an interval in R. The endpoints of each edge are vertices.
In particular, V must contain the set of singular points of the curve.

Example 3.1 Reconsider the lemniscate of Gerono € R? dened in Ex. 2.1 and shown in
Fig. 2(b). Figure 5 illustrates a cellular decomposition of consisting of 3 vertices and 4 edges.

Figure 5: Cellular decomposition for lemniscate of Gerono with vertices/; and edgesg

A numerical cellular decomposition simply represents each edge of a cellular decomposition by
an interior point along with a homotopy that permits the tracking along the edge starting from the
interior point. From this numerical representation, one can perform computations on each edge.
For example, one can sample points along each edge and construct a Chebyshev interpolant as
described in [1]. From the Chebyshev interpolant, one can easily approximate the arc length of
each edge and approximate mesh points in the desired structure, for example, uniform in arc length.

At each point on the curve, there is a local irreducible decomposition of the curve at the point
which can be computed using numerical algebraic geometry [9]. A curve is locally irreducible at
every smooth point on the curve and is locally di eomorphic to the tangent line. This is utilized
next to construct a tangential parameterization at smooth points. The only points on a curve where
the curve could be locally reducible is at a singular point. Hence, at each singular point on the
curve, the approach in [9] uses the local monodromy group structure computed using a homotopy
to determine the locally irreducible components of the curve at a singular point. Moreover, each
locally irreducible component has a well-de ned local degree [9]. If a component has local degree
equal to 1, then it is locally di eomorphic to a tangent line.
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Example 3.2 Continuing from Ex. 3.1, all points are smooth points of exceptv, p 0;0qg
At v, decomposes into two locally irreducible components each of local degieeorresponding to
each of the two local tangent directions atv».

Local irreducible decomposition is important for solving (1) since Theorem 2.6 enforces that
the solution is continuous along each locally irreducible component. Hence, a numerical solving
scheme needs to allow for a singular point to take a di erent value along each locally irreducible
component passing through the singular point as illustrated in Figure 2(b).

3.2 Tangential parameterization at smooth points

The following uses an approach based on a local tangential parameterization for a smooth curve to
compute xpsgand obtain g which greatly simpli es the calculation of coe cients for the numerical
scheme. Let y t po;p1;:::;pn 1Uconsist of N mesh points uniformly distributed in arc length
using a cyclic ordering withp;  pn | as needed. De nerp; 1;p; 1Sto be the segment of the curve
passing through pointsp; 1, pi, and p; 1. Let v; be a unit tangent vector to the curve at p; and
consider’jgq pi tvi which parameterizes the tangent line to the curve atp;. Consider the map

it 1pi 1SN Rdenedby impg pp piqVvi. By replacingvi by v as needed and takingN
large enough, ; is a di eomorphism from rp; 1;p; 1StOr ipo 1G i 19swhere

i 19 O ipid i 1G

See Fig. 6 for an illustration of this tangential parameterization construction.

Figure 6: lllustration of tangential parameterization.

Let X; :r ipo 16 i 198 N rpi 1;pi 1S be the inverse of ;. Locally, (8) using X;ptq is
simplied at t 0 based on the following.

Theorem 3.3 With the setup described aboveX g vi. Moreover, for corresponding metric

tensor Gptg (3) becomes updq Bzéftéﬂq.

Proof. FortPr i 1G ipo 10S one knows that X;ptq satis es

pXiptg piq vi ot
FpXiptqq
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